

QUICK-LOOK ASSESSMENTS TO IDENTIFY OPTIMAL CO₂ EOR STORAGE SITES

Vanessa Núñez Lopez, Mark H. Holtz, Derek J. Wood, and Susan D. Hovorka

Outline

- Objectives
- Multistage Methodology
 - Stage 1: Screening of candidate reservoirs Results
 - Stage 2: Quick-Look dimensionless model to estimate recovery and storage potentials Results
 - Stage 3: Detailed reservoir characterization
- Summary

Objectives

- Develop a multistage quick-look methodology to identifying optimal CO₂ EOR storage sites.
 - Identify miscible CO₂ EOR candidate reservoirs with potential for EOR CO₂ sequestration.
 - Estimate oil recovery and CO₂ sequestration volumes through dimensionless modeling.
 - Comprehensive description of selected top sites through reservoir characterization

Methodology

Stage 1: Screening of candidate reservoirs

Sources of Data

Texas: Atlas of Major Texas Oil Reservoirs, Atlas of Major Texas Gas Reservoirs, Railroad Commission of Texas, others

Louisiana: TORIS database, others

Alabama and Mississippi: Alabama Geologic Survey, others

Stage 1: Screening of candidate reservoirs

Stage 1: Screening of candidate reservoirs (Minimum Miscibility Pressure Calculations)

Function for Obtaining
Oil C₅+ Molecular

weight

$$MW = \left(\frac{7864.9}{{}^{o}API}\right)^{\frac{1}{1.0386}}$$

Stage 1: Screening of candidate reservoirs

Estimating CO₂ Minimum Miscible Pressure

 $MMP = -329.558 + (7.727 * MW * 1.005^{T}) - 4.377 * MW$

Stage 1: Screening of candidate reservoirs (Step 2 Results)

Stage 1: Screening of candidate reservoirs (Step 2 Results)

Areas with Miscible CO₂ EOR Potential

Stage 1: Screening of candidate reservoirs

Step 2: Integration to the geological and economic setting

Candidate Assets	Candidate Liabilities
Field unitized	Questionable seals
Cumulative oil production greater than 1 MMSTB	Extreme reservoir heterogeneity
Short distance to CO ₂ source	Reservoir in urban area

Stage 1: Screening of candidate reservoirs (Step 2 Results)

Galveston area map with candidate reservoirs for CO₂
EOR Storage

Stage 2: Dimensionless Quick-Look model to estimate recovery and sequestration potentials

Homogeneous, Cartesian rock volume with realistic petrophysical properties

Dimensionless Groups

$$R_L = \frac{L}{H} \sqrt{\frac{k_Z}{k_X}} \qquad N_\alpha = \frac{L}{H} \tan \alpha$$

$$Mw^{0} = \frac{k^{0}_{rw} * \mu_{0}}{k^{0}_{ro} * \mu_{w}} \qquad Mg^{0} = \frac{k^{0}_{rg} * \mu_{0}}{k^{0}_{ro} * \mu_{g}}$$

$$N_g^o = \frac{H\Delta\rho g\cos\alpha}{\Lambda P}$$

Additional Groups

$$P_{injD} = P_{inj} / MMP$$

$$P_{pD} = P_p / MMP$$

$$S_{oi}$$

$$S_{orw}$$

Stage 2: Quick-Look model to estimate recovery and sequestration potentials

Recovery curves from four different reservoirs with constant dimensionless group values

Stage 3: Detailed Reservoir Characterization

Determining reservoir architecture through correlation and mapping of chronostratigraphic

QAa8874c

Tasks For Establishing Fluid Flow Trends in a Reservoir

Ascertain the initial fluid and rock-fluid properties **Analyze initial fluid levels** Generate a production time series analysis **Assess well test data Determine flow directions of injected fluids**

Inputs into a 3-D Geocellular Model

Identify Reserve Growth Potential

- 1. Delineate Remaining Hydrocarbon Resource
- 2. Determine Reserve-Growth Concepts (WAG, gravity stable, continuous injection)
- 3. Target Reserve-Growth Opportunities

Summary

- A large potential for reserve growth lies along the Gulf Coast through the application of CO₂ miscible enhanced oil recovery in more than 1070 candidate reservoirs.
- Results indicate that there is the potential for approximately 4.7 BSTB of addition oil reserves in our study area.
- Texas contains the greatest oil CO₂ EOR potential with a target of over 3 BSTB.
- Multistage methodology allows you to characterize unmanageable number of reservoirs.